
Scalable Unix Tools on Parallel ProcessorsWilliam Gropp and Ewing LuskMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL, 60439AbstractThe introduction of parallel processors that run aseparate copy of Unix on each process has introducednew problems in managing the user's environment.This paper discusses some generalizations of commonUnix commands for managing �les (e.g., ls) and pro-cesses (e.g., ps) that are convenient and scalable.These basic tools, just like their Unix counterparts,are text based. We also discuss a way to use thesewith a graphical user interface (GUI). Some notes onthe implementation are provided. Prototypes of thesecommands are publically available.1 IntroductionMany massively parallel processors (MPPs) areproviding a full Unix environment on each proces-sor. This has many advantages, including providinga standard environment that users are familiar with.The disadvantage is that many common tasks, suchas listing processes and �les on each processor, cannow take a signi�cant amount of time and generatetoo much output to be quickly grasped.This paper discusses the design of versions ofsome commonly used Unix tools for this kind ofparallel environment as well as some issues rele-vant to their implementation. Prototype versionsof many of these programs have been written asshell scripts and are in use at the High PerformanceComputing Research Facility at the Argonne Na-tional Laboratory. These prototypes are availableby anonymous ftp from info.mcs.anl.gov in �le`pub/ibm_sp1/ptools.tar.Z'.In designing these programs, we set several goalsthat we believe are crucial to their success. The toolsshould be:� Familiar to Unix users. They should haveeasy-to-remember names (we chose to use

Figure 1: pps -all aux | egrep -v \"root|USER|$LOGNAME" | pdisp.p<unix-command-name>) and take the same ar-guments.� Scalable. They should be fast enough to use withthe same regularity that users use ls and ps, re-gardless of the number of processors.� Not generate too much output. It should be pos-sible to restrict the amount of output to a singlescreenful.For example, to list the processes belonging to joe,we proposepps -all aux | grep joewhich is almost identical to the uniprocessor versionps aux | grep joe.The last requirement on the amount of output isdi�cult to make consistent with the �rst requirement.That is, if the natural extension of the Unix commandto many processors would produce several hundredlines of output, we have no choice but to generatethat data. However, we do provide two ways to helpachieve this third goal. One way is to generate the

output in a form that makes it easy for the user toprovide his own �lters. Another is to provide some ad-ditional programs that provide options that can helpthe user reduce the amount of output. An exampleof this is in looking for a �le. On uniprocessor Unixsystems, the command ls is often used to check if a�le is present: the user types ls filename (or evenjust ls) and looks at the output to see if the �le is in-deed present. This is (usually) �ne on a uniprocessorsystem, but on a parallel processor with individual �lesystems, this could generate hundreds of lines of out-put. Worse, if the �le is present on most but not allprocessors, it is easy to miss that fact in the massiveoutpouring of data that executing ls on each proces-sor could produce.The solution to this problem lies in looking at otherways that Unix provides to answer the same question.For example, on a uniprocessor system the user couldhave executedtest -s filenameif ($status == 0) echo "no such file"We provide a capability like this with ppred, wherewe have simpli�ed the interface by combining the testwith the action.Managing processes has the same problem; execut-ing ps on even a few processors can produce too muchdata to grasp easily. We introduce a command pfpsthat provides services similar to find applied to thespace of processes instead of �les.An alternative way to manage large volumes of datais to use graphical rather than text-based display. Wedescribe a program pdisp that can translate the out-put from our other tools into a graphical display.In order to simplify the processing of any outputfrom any of these tools by other Unix tools (includingthe graphical display tools we will discuss in Section2.13), all output lines are prepended with the node-name of the processor.It is particularly important that output be \line-atomic;" that is, output send to stdout from one pro-cessor should not appear in a line generated by anotherprocessor.The general principle is important: disconnectingthe functionality from the GUI. The use of ASCII textas an interface between tools is one of the most fun-demental design features of Unix. It should not beabandoned because of the advent of GUI`s; it remainsrelevant as the key to leveraging the power of softwaretools.

2 The toolsThe tools that we have implemented fall into threebroad classes: programs for manipulating the �le sys-tem, programs for manipulating the process space, andprograms for running arbitrary commands on all pro-cessors.Command Actionpcp Parallel copy (for systems withlocal disks on each node).pcat Parallel concatenation of �lespls Parallel directory list (ls).prm Parallel removepmv Parallel movepfind Parallel findpps Parallel pspfps Parallel process �ndpkill Parallel process killpexec Run a command on all selectedprocessorsptest Run test on all selectedprocessors, anding the resultsand returning a single statusvalue.ppred Run a command when acondition is satis�edpdistrib Run a command on a collectionof �lespdisp Display the output of acommand graphicallyThe programs that generate output (such as pls)use the same format as their Unix counterparts exceptthat the name of the processor that generated the out-put is prepended to each output line. This allows theoutput to be sorted by processor. An alternate ap-proach is to separate the output by processor name;we did not do this because it makes it harder to usethe output as input to other programs.All of the commands take as their �rst argument aspeci�cation of the processors to run on.2.1 Specifying NodesNodes may be speci�ed in several ways. The sim-plist speci�cation is a list of node names:node3,workstation2,big-serverThis method is adequate for small numbers of nodes.For larger numbers of nodes, we introduce the domain,which is a collection of nodes. For example, a domainmay include every node in an MPP. A domain may

either be speci�ed by a name de�ned when the toolsare installed on a system (such as \paragon" or \sp1")or a name of a �le (preceeded by @) that contains a listof nodes. For example, if the �le `mynodes' containsnode3workstation2big-serverthen the speci�cation @mynodes speci�es the samenodes as the �rst example above.Within a domain, it is often desirable to select asubset of nodes. This is done by numbering the nodesconsequetively within a domain, starting from one.The numbers are speci�ed as any combination of ind-vidual node numbers and ranges of consequtive nodes,separated by commas. For example, 1,4-8,17 speci-�es nodes 1, 4, 5, 6, 7, 8, and 17 in the given domain.A set of nodes within a domain is speci�ed by givingthe domain, followed by a colon, followed by the list ofnodes. For examples, using the domain de�ned above,the nodes node3 and big-server could be speci�edwith@mynodes:1,3There should always be a default domain. For ex-ample, the domain that the processor from which acommand was run belongs to is often a good choice ofdefault domain. For MPPs with front-end processors,the default domain on the front-end processors shouldbe the MPP.Multiple domains may be speci�ed; for example,1,3-5,17,@mynodes:2-3speci�es nodes 1, 3{5, and 17 in the default domainand nodes 2{3 in the domain mynodes. We chose num-bers for input because they are concise. For output,the node name is probably better, though for someuses, just the number in the domain would be easier(for example, in placing output in a GUI display).We provide the routine phostname as a parallel ver-sion of hostname; this provides a simple way to con-vert a nodelist to the names of the nodes. Note thatphostname can be implemented by using pexec withprogram hostnameTo summarize, the nodelist may be speci�ed by thefollowing YACC-like grammar, where [a] denotesan optional a and single quotes surround terminalsymbols, and <...> surround descriptions of simpletokens like integers and �lenames.nodelist -> '-all'nodelist -> domain ':' nodelist

nodelist -> range [, nodelist]nodelist -> nodenum [, nodelist]nodelist -> nodename [, nodelist]domain -> <predefinedname>domain -> '@' <valid filename>range -> nodenum '-' nodenumnodenum -> <integer>nodenum -> 'last'nodename -> <any valid nodename>Nodes are numbered from one. The special value -alldenotes all nodes. The special nodenum last denotesthe number of nodes in the current domain. Thesenumbers may refer to nodes in an MPP or to membersof a workstation network.2.2 Parallel psThe parallel ps has the same format as ps with theexeception of the speci�cation of the processors to runon. The output is similar except that each output hasthe processor number prepended. The output is notsorted by processor number.For example, to �nd all \defunct" processes on a 64node system, usepps 1-64 aux | grep '<defunct>' | sortNote that this does not run grep and sort in parallel.An alternative approach is described below that usespfps.2.3 Parallel lsThe command pls runs ls on the speci�ed systems.Exceptions: The option -t to ls sorts the �les bytime; the output from pls will preserve this only ona processor-by-processor basis. The behavior is thesame for all other options to ls that sort the output.2.4 Parallel cat, cp, mv, and rmThe command pcp copies a �le from a sin-gle location to the local disks on a speci�ed listof processors. For example, to copy `mycode'to `/tmp/myname/mycode' on processors 1 and 32through 63, usepcp 1,32-63 mycode /tmp/myname/mycodeWe considered using the name pdist rather thanthe name pcp because pcp does a one-to-many copy.We decided that pcp was a better choice because acommon use is the parallel version of

cp mycode /tmp/myname/mycodethat is, the distribution of an executable or data �leto the local disks.The command pcat concatenates �les from thespeci�ed nodes onto standard output (stdout). Wenote there are aspects of this command that are in-herently non-scalable; however, it is so useful that itneeds to be provided. The commandpcat 1-10 /tmp/testfile > myfileconcatenates the �le `/tmp/testfile' on nodes onethrough ten to the �le `myfile'. The results are con-catenated in the listed node-number order.The command prm executes rm on the speci�ednodes.The command pmv executes mv on the speci�ednodes. Files may only be moved within a single pro-cessor. That is, a �le may be moved from one placeto another on the local disk of a processor, for eachprocessor selected.Note that in all of these cases, the interactive option(-i) is not supported.2.5 Parallel �ndThe command pfind executes the Unix commandfind on the speci�ed list of processors. For example,to �nd all of the �les on the local disks that are olderthan two days, usepfind 1-128 /tmp -atime ... -print2.6 Parallel process �ndMany of the uses of ps are similar to the uses of ls,such as determining the age of a process (resp. �le) orowner of a process (resp. �le). Because a �le systemoften contains large numbers of individual �les, theUnix command find provides a way to �nd �les thatsatisfy some common properties. Because the num-ber of processes is relatively small, there has been nocounterpart to find for processes. However, with 30to 60 processes on each processor, a ps of even a smallparallel system can generate hundreds to thousands oflines of output. In this section, we propose a process�nd (and its parallel version) that provides the samestyle of functionality that find provides for the �lesystem.Just as with find, multiple matching criteria areand'ed together. For example, to �nd out which pro-cesses named bigjob have been running for at leastone day, use

pfps -all -tn bigjob -stime 1:0:0 -printThe options for pfps are given in Table 1.2.7 Parallel predicateThis command uses a user-speci�ed predicate to se-lect which nodes to execute a user-speci�ed commandon. ppred nodespec predicate actionFor example, to �nd out on what processors in a 128node system the �le /tmp/prog is not present, you canuse (assuming csh is the shell)ppred 1-128 '\!-s /tmp/prog' 'echo $hostname'(note the escape on the c-shell `not' symbol ! and theuse of `...' to prevent premature evaluation of thepredicate and action.2.8 Parallel testThis command forms the logical `and' of the resultsof running test on each selected node.ptest nodespec testconditionFor example, to check if all processors have the �le/tmp/myprog, you can useptest 1-128 '-s /tmp/myprog'2.9 Parallel killThe command pkill kills a named process on theselected nodes. It is basically a simpli�cation of pfps;the commandpkill 1,10-24 SIGQUIT -tn myprogramis equivalent topfps 1,10-24 -tn myprogram -kill SIGQUIT2.10 Parallel executionThe command pexec provides a way to executean arbitray command or (uniprocessor) Unix programon a list of processors. The format of this commandis pexec nodelist ...command.... For example, torun ps on each node and grep for <defunct> in par-allel, usepexec 1-64 "ps aux | grep '<defunct>'" | sort

Option Description-n name Match with the name of the process. The name may contain wildcards.-tn Match the tail name of the executable-o owner Match with the owner (by name) of the process. By default, only the user name of thecaller is matched. Use -o '*' to match any user name.-pty name Match with the controlling terminal of the process-rtime hh:mm Match with jobs that have run hh:mm time or longer.-stime dd:hh:mm Match with jobs that started at least dd days, hh hours, and mm minutes ago.-r state Match with jobs in the speci�ed run state-or Combine matching criteria by or'ing them.-print Causes matching jobs to be printed in the selected ps format.-id Causes matching jobs to be printed as nodename:pid.-sort Causes the output to be sorted by nodename-exec pgm args Executes pgm for each matching process. Similar to find, the string \f\g stands for thepid of the matched process, and \; indicates the end of the list of arguments to give tothe program.-kill signal Causes all matched processes to be killed with the speci�ed signal. The signal value maybe either the number or the name (for example, -kill 9 and -kill SIGQUIT are thesame).-nice n Sets the nice value of matched jobs.Table 1: Options for the pfps commandThe prototype implementation uses pexec to imple-ment many of the functions described in this pa-per. Any output generated from the commands isprepended by the name of the processor that gener-ated it.2.11 Parallel execute scriptThe command pexscr takes input from standardinput and executes each line on the indicated proces-sor. The format of the input isprocessor_name arbitrary_commandThis format matches the output format from the otherparallel commands, allowing awk or perl to constructcommand scripts to execute from the output of theparallel commands.2.12 Parallel distribute executionThe command pdistrib takes a list of �les anda command to apply to the �les, and distributes theprocessing of the �les across the speci�ed processors.For examplepdistrib -all "cc -c" *.ccauses the compilation of all of the C �les in the cur-rent directory to be distributed across all availableprocessors.

2.13 Parallel displayThe command pdisp takes input from standard in-put and displays it.The options for pdisp are

Option Action-yes colorname Color of nodes appearing ininput-no colorname Color of nodes not appearing ininput-down colorname Color of down nodes-text string Text for nodes appearing in in-put. This string may containformatting information such as$3 for the third token in theline.-small Do not display text unless but-ton pressed (produces smalldisplay)-store Save text with node; pushingthe left mouse button will dis-play the text.-layout RxC Layout of R rows and C columns-domain name Name of the machine's domain-pserver name Use a pre-existing display-pstart name Make this a pdisp displayserverFor example, to graphically display the nodes onwhich the program bigjob is running, usepfps -all -tn bigjob | pdispThe options -pstart and -pserver allow the dis-play window to be reused by several commands. Forexample, to create a display, then display the nodeswithout the �le `/tmp/mydata', and then display thenodes with defunct jobs, dopdisp -pstart mydispppred -all \!-s /tmp/mydata | \pdisp -pserver mydisppps -all aux | grep '<defunct>' | \pdisp -pserver mydispA sample display is shown in Figure 1.Each node on the display in Figure 1 is actuallya button. For example, using the middle button ofa three-button mouse pops up an xterm on the indi-cated node. Pushing the left button pops up all of theoutput associated with that node.2.14 Parallel partition infoMany MPP's provide a mechanism for reservingparts or all of the MPP for use by a single pro-gram. These are often called partitions. The com-mand pinfo displays the partitions in use and theuser that owns that partition. It takes many of thesame arguments as pdisp. A sample display is shownin Figure 2 (node 32 is down).

Figure 2: Display of partition availability and users ofpartitions.3 ImplementationIt is important that these commands themselvesexecute in parallel. In interactive use, it is commonto expect a command to complete in a second or less.The parallel version of the same command should nottake much longer. This requires that the commandsbe executed in parallel.A simple way to arrange for parallel execution isto use recursive subdivision. Each node is given somenumber of processes to run a command on. It dividesthat list in half, and sends the upper half to the �rstprocessor in that half. This process continues untilonly one process is left. This takes log p steps for pprocesses. A simple form of this is shown in Figure 3for pls. This sample code has no error checking andassumes a single range of processors from start toend. The names of the nodes are spnodei, for i = 1; : : :Various optimizations of this process are possible.For example, for small numbers, the recursive subdivi-sion may be replaced with a simple loop. Other opti-mizations can take advantage of the particular struc-ture of a parallel machine, adapting the subdivisionstrategy to the available communication network andservices.In order to provide maximumparallelism, each sub-division must execute the subdivided processes in thebackground. It is important to ensure that a commanddoes not return until all of its children have completed.Many of these commands can be implemented in

#! /bin/cshset start = $1set end = $2shiftshiftset nodename = `hostname`ls $* |& sed "s/^/$nodename/g"while (1)if ($start >= $end) break# Compute the separator for the tree@ sep = ($start + $end) / 2if ($sep == $start) then@ sep = $sep + 1if ($sep > $end) breakendifrsh spnode$sep -n /tmp/pls $sep $end $* &@ end = $sep - 1endwaitFigure 3: Simpli�ed code for parallel lsterms of pexec or ppred, perhaps combined with somerelatively simple awk or perl scripts. We have chosento provide a larger set of commands because they rep-resent common cases for which we believe shortcutsshould be provided.On many systems, the time to load a programfrom a central �lesystem can be signi�cant. On thesesystems, programs (including these tools) should beloaded from local disks (assumed to be `/tmp'). Ourprototype implementation includes a program ptinitthat copies the codes to /tmp. The programs that areexecuted by these tools (e.g., ps) should also reside onlocal disks where possible.To handle the case where a node in the list is notresponding or unavailable, the programs should is-sue a warning message and skip to the next processin the upper half to insure that processors are notmissed because their `parent' in the subdivision treewas not available. Because it is time-comsuming to de-tect down nodes, a replicated database of down nodesshould be used.The implementation of parallel exec should sort theinput script and use the recursive subdivision (or atleast collect all commands for the same processor to-gether and send them in a lump).Also note that all of these commands can executefaster if a server process is always running on each ofthe parallel processors. Such a server is not required

however; the prototype implementation is written en-tirely in terms of shell scripts.

